Efficiency of Bacteria-Based Self-Healing Mechanism in Concrete

Author:

Shaaban Sally1,Hammad Nancy1,Elnemr Amr1ORCID,Shaaban Ibrahim G.2

Affiliation:

1. German University in Cairo

2. University of West London

Abstract

Concrete is most widely used as an essential building material in the construction industry all over the globe. Concrete deteriorates over time, and cracks eventually form on its surface for many reasons, such as environmental surroundings and extra. This deterioration and cracks might lead to the ingress of water and chemicals that susceptible steel bars or reinforcements to corrosion. Since this deterioration is inevitable, maintenance and repair are also necessary. This process requires skilled labor and is cost-effective. Thus, researchers suggested alternative techniques to enhance concrete's mechanical properties and search for treatments to be applied to concrete's surface for healing and sealing the cracks by producing calcium carbonate precipitation. Therefore, self-healing concrete was introduced; this method is significant as it's proven environmentally friendly. This research aims to investigate the use of liquid bacteria incorporated in concrete mix and assess whether there would be improvements in the mechanical properties of the bacterial concrete compared to the conventional mix and an autogenous self-healing mix. Two different concentrations of an alkaliphile bacterium called Bacillus Subtilis were incorporated into the concrete mixes to test their ability to repair cracks by producing calcium carbonate and sealing them. This experiment showed a remarkable increase in bacterial concrete's compressive and tensile strengths. A visible partial crack sealing was also observed in specimens containing different concentrations of Bacillus Subtilis. Results also indicate that optimum results were obtained when the bacterial solution of concentration 108 cells/ml was incorporated, especially at early ages.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3