Nanomaterials as Next-Gen Corrosion Inhibitors: A Comprehensive Review for Ceramic Wastewater Treatment

Author:

El-Sherif Rabab1,Mahmoud Ahmed S.2ORCID,Abd-El-Khalek Dalia E.3,Khamis E.4

Affiliation:

1. Cairo University

2. Egyptian Russian University (ERU)

3. National Institute of Oceanography and Fisheries, NIOF

4. Alexandria University

Abstract

This study reviews the use of corrosion inhibitors in industrial wastewater treatment, specifically in ceramic wastewater. It discusses the main problem limits the use of treated wastewater, which is corrosion behavior. To reduce this behavior and enable safe reuse of industrial wastewater, corrosion inhibitors are used. The study aims to provide insights into the selection, use, and effectiveness of corrosion inhibitor types in the media under study. The results can help engineers, researchers, and wastewater treatment professionals to find the best corrosion inhibitors for various municipal wastewater applications, increasing the sustainability and efficiency of wastewater treatment processes. The ceramic industry faces challenges in managing complex aqueous effluents generated from mining, shaping, glazing, and manufacturing processes. Nanomaterial-based alternatives, such as titanium nanotubes, zinc oxide nanoparticles, nanoenhanced filters, and stimuli responsive polymer and silica coatings, have emerged as promising next-generation corrosion inhibitors due to their multilayer passivation and high specific surface area. The analysis focuses on the feasibility of these materials' mechanisms, such as crystal deformation, nucleation hindrance, coating barriers, and passivation improvement, in industrial settings. In conclusion, the use of corrosion inhibitors in industrial wastewater treatment can significantly improve the sustainability and efficiency of wastewater treatment processes. Understanding the mechanisms by which these nanomaterials influence crystal growth modification, deposition kinetics, and passivation performance could lead to more effective and sustainable solutions for industrial wastewater treatment.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3