Computational Fluid Dynamics Studies in the Drying of Industrial Clay Brick: The Effect of the Airflow Direction

Author:

Araújo Morgana Vasconcellos1,Sousa Alanna C.2,Luiz Marcia R.2,Cabral Adriano S.3,Pessoa Thayze Rodrigues Bezerra4,Martins Pierre Correa4,da Silva Anderson Melchiades Vasconcelos3,Santos R.S.3,de Oliveira Vital Araújo Barbosa5,de Lima Antonio Gilson Barbosa3

Affiliation:

1. Federal University of Campina Grande (UFCG)

2. State University of Paraíba

3. Federal University of Campina Grande

4. Federal University of Paraíba

5. State University of Paraiba

Abstract

The manufacture of ceramic brick goes through the stages of raw material extraction, clay homogenization, material conformation, drying and firing. Drying is the phase that needs greater care, as it involves removing part of the moisture from the brick, in order to preserve its quality after process. This work aims to predict heat and mass transfer in the drying of ceramic bricks in oven using computational fluid dynamics. Considering the constant thermophysical properties, a transient three-dimensional mathematical model was used to predict mass and energy transfer between the material and air during the process. Drying simulations at temperature of 100°C were performed with the air flow in the frontal direction to the ceramic brick holes and the results were compared with those obtained for the air flow in the perpendicular direction to the brick holes reported in the literature. It was found that the position of the brick in relation to the direction of air flow inside the oven affected directly the drying and heating kinetics, and the distribution of temperature and moisture content inside the brick. The positioning of the holes in the brick parallel to the direction of the air flow resulted in reduction at the drying time and, consequently, in energy savings in the process, more uniform drying, and improvement in the product quality.

Publisher

Trans Tech Publications, Ltd.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3