Application of CALPHAD Method for Predicting of Concentration Range of Amorphization of Transition Metals Melts

Author:

Agraval Pavel1,Turchanin Mikhail1,Dreval Liya1,Vodopyanova Anna1

Affiliation:

1. Donbas State Engineering Academy

Abstract

Early, the efficiency of the CALPHAD (Calculation of Phase Diagrams) method to a targeted search for compositions of amorphous alloys has been shown. The method for predicting the ranges of amorphization is based on the calculation of diagrams of metastable phase transformations between supercooled melts and boundary solid solutions on the base of pure elements. In this work, the model parameters for thermodynamic properties of liquid alloys and boundary solid solutions were summarized in a self-consistent database for the multicomponent Cu–Fe–Ni–Ti–Zr–Hf system. Such database for the multicomponent system is based on a common set of model parameters for boundary binary and ternary systems. This database was used to predict the concentration ranges of amorphization for the quinary Cu–Fe–Ni–Ti–Zr, Cu–Fe–Ni–Ti–Hf and boundary ternary and quaternary systems. The results of calculations are presented along sections in quaternary and quinary systems. The ternary and quaternary equiatomic alloys along with high entropy CuFeNiTiZr and CuFeNiTiHf alloys are trapped into prognosed composition ranges of amorphization. Predicted composition space of amorphization for melts of the Fe–Ni–Ti–Zr system is shown on the concentration tetrahedron. Based on the obtained results, a new criterion for predicting the concentration regions of amorphization of multicomponent melts is proposed, according to which the presence of a sufficient content of metals that are electron acceptors and donors is a chemical factor that affects the thermodynamic stability of melts and determines their glass-forming ability. For multicomponent melts of the Cu–Fe–Ni–Ti–Zr–Hf system the concentration ranges of amorphization correspond to the simultaneous fulfillment of the conditions xFe + xNi + xCu > 0.25 and xTi + xZr + xHf > 0.15, where Fe, Ni, and Cu are electron acceptors and Ti, Zr, and Hf are electron donors.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3