Osteoblast-Mediated Resorption of Porous Bioactive SCPC Granules Enhances Bone Regeneration in Human Extraction Sockets

Author:

Abdel Razik Heba E.1,Nakamura Miho1,Bergara-Muguruza Leire1,Sarwar Uruj1,Hassan Mohammad2,Horowitz Robert3,El-Ghannam Ahmed2

Affiliation:

1. University of Turku

2. University of North Carolina at Charlotte

3. NYU College of Dentistry

Abstract

Bone graft materials are widely used in orthopedic and maxillofacial surgeries. The controlled resorbability of the graft material is essential for bone regeneration. Hydroxyapatite and biphasic calcium phosphate bone grafts have poor resorption and limited bone conductive effects. Histology analyses of bone biopsy from SCPC grafted human extraction sockets showed complete bone regeneration and graft resorption in absence of osteoclasts and macrophages. The hypothesis of the present study is that bioactive SCPC inhibits osteoclast’s activity due to the presence of resorbable silica phase in the material. Our objective is to analyze the effect of SCPC dissolution products on the resorption activity of osteoclasts. The conditioned medium was prepared by immersion of SCPC resorbable bioactive SCPC porous granules (Shefabone, Inc, USA) in cell culture medium at various ratios at 37°C for 3 days. The concentration of Si ions released from the SCPC granules into cell culture medium was measured using ICP-OES. Osteoclast precursors derived from human bone marrow were seeded on bone slices and cultured in the conditioned medium containing 10% FBS and osteoclast induction factors. Osteoclast differentiation and resorption were evaluated by TRAP staining and measurement of the volume of resorption pits on the bone slices. Mature multinuclear giant TRAP-positive osteoclasts were observed on the bone substrates after 14 days incubation in control medium containing osteoclast induction factors. In conditioned medium, the number of multinuclear TRAP-positive cells was significantly decreased as the concentration of SCPC dissolved silica increased. The dissolution of silica from SCPC into the culture medium correlates well with down regulation of osteoclast differentiation and the rapid bone regeneration in human bone defects.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3