Biopolymer Kappa Carrageenan with Ammonium Chloride as Electrolyte for Potential Application in Organic Battery

Author:

Rudati Paula Santi1,Dzakiyyah Yumna2,Fane Richie2,Turnip Maria Artha Febriyanti2,Pambudi Muhammad Tegar2,Wulandari Priastuti2

Affiliation:

1. Politeknik Negeri Bandung

2. Institut Teknologi Bandung

Abstract

Carrageenan is a generic name for a family of natural, water-soluble, sulphated galactans isolated from red seaweeds and exploited commercially. The biopolymer of kappa carrageenan has been known to be used as electrolyte in electrochemical device since it shows good ionic conductivity characteristic. In this study, we attempt to study the chemical, morphology, and electric properties of biopolymer kappa carrageenan. We developed a free-standing film of kappa carrageenan with addition of ammonium chloride as an electrolyte for an organic battery prototype. We prepared the solution by mixing kappa carrageenan, ammonium chloride and water to form a gel with a particular concentration. Then, the gel was coated on the substrate and cured at 50°C for 4 hours. The final free-standing film product reveals a thickness about 100-200 mm as captured by SEM image in cross-section view. The morphology of kappa carrageenan with or without ammonium chloride clearly shows a non-homogeneous surface that attributed to the nature characteristics of kappa carrageenan immiscible. The addition of ammonium chloride into kappa carrageenan forms a smoother surface that show good mixture of kappa carrageenan. FTIR spectra of the samples show the interaction of ammonium chloride to the host polymer of kappa carrageenan as indicated by the shifted of the O-H peak from 3448 to 3446 cm-1 and from 3288 to 3207 cm-1 while the peak of 2924 cm-1 is disappeared after addition of the ammonium chloride. The implementation of this film in an organic C_Zn battery prototype shows that battery’s voltage reached 2.1 Volt by charging. Then, the battery can be used to emit an LED with 20 µA electrical current for about 1 hour in discharging process.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3