Abstract
Binder stabilized preforms are getting increased attention in the wind turbine industry with the aim to increase automation in the production of large blades. In this context a preform is a stack of dry unidirectional glass fiber non-crimp fabrics (UD-NCF), which is consolidated using a polymeric binder. The preform is manufactured in a separate mold, and subsequently placed in the main blade mold. During placement of preforms, fiber wrinkling may occur due to the deformation of the preform. To accommodate this problem, we propose a predictive simulation model that can be used to investigate how different process parameters influence the wrinkle creation. Most forming simulation models in the literature consider frictional laws in the inter-ply interface for multi-layered fabrics. In this work the binder interfaces between the layers are modelled using a cohesive traction-separation law to accurately model binder degradation and wrinkle creation during preform deformation. The model predictions are compared with full thickness preform coupon specimens.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献