Desiccant Dehumidification System Developed Using Additive Manufacturing and Biodegradable Materials

Author:

Comino Francisco1,Romero Pablo E.1,Molero Esther1,Ruiz de Adana Manuel2ORCID

Affiliation:

1. Universidad de Córdoba

2. Universidad de Cordoba

Abstract

Traditional dehumidification equipment is based on vapour compression units. However, they depend mainly on electrical energy and use polluting gases. An alternative to this equipment is desiccant dehumidification systems, which is based on adsorbent materials. These desiccant systems are an efficient way of removing moisture from the air in buildings with high latent loads. This work presents a new way to manufacture fixed-bed desiccant elements that can remove moisture from an air flow. The desiccant element is obtained by material extrusion-based additive manufacturing (fused filament fabrication or FFF). This technology is cost-effective and provides a precision and finish suitable for the intended use. The filament used is Pine, consisting of an easy printable thermoplastic matrix (polylactic acid, PLA, 80 wt%) and a filler based on pine wood powder (20 wt%). This composite material reached a water absorption capacity of 11.5 %. The experimental results of the desiccant air unit demonstrated high dehumidification capacity, up to 39 mg/s, for a regeneration air temperature of 50 °C. The volumetric adsorption rate was also high, up to 30 g/s·m3, for low pressure drop values, below 522 Pa. The proposed method allows the customised, on-demand and just-in-time manufacturing of air dehumidification systems based on the use of biodegradable desiccant materials of organic origin. Such solutions contribute to the circular economy promoted by The United Nations in the Sustainable Development Goals.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3