Further Development of an Adaptive Joining Technique Based on Friction Spinning to Produce Pre-Hole-Free Joints

Author:

Wischer Christian1,Homberg Werner1

Affiliation:

1. Paderborn University

Abstract

Mechanical joining processes are an essential part of modern lightweight construction. They permit materials of different types to be joined in a way that is suitable for the loads involved. These processes reach their limits, however, as soon as the boundary conditions change. In most cases, these elements are specially adapted to the joining point and cannot be used universally. Changes require cost-intensive adaptation of both the element and the process control, thus making production more complex. This results in high costs due to the increased number of auxiliary joining element variants required and reduces the economic efficiency of mechanical joining. One approach to overcoming this issue is the use of adaptive auxiliary joining elements formed by friction spinning. This article presents the current state of research on pre-hole-free joining with adaptive joining elements. The overall process chain is illustrated, explained and analyzed. Special attention is paid to demonstrating the feasibility of pre-hole-free joining with adaptive joining elements. The chosen mechanical parameters are subsequently listed. Finally, a comprehensive outlook of the future development potential is derived.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3