Compact Model Analysis for Low Voltage OFETs with Electrolytic Gate Dielectrics: Toward a Universal Model for Poly(3-Hexylthiophene) P3HT OFETs

Author:

Abhinav T.1,Chandra Goutam Kumar1,Predeep P.1

Affiliation:

1. National Institute of Technology

Abstract

The lightweight with flexibility and low-cost processing engineered the rapid growth of organic field-effect transistors (OFET) in the past three decades. Suitable compact models and parameter extraction methods are being developed to further the use of OFETs in integrated circuits, where stimulations are required to optimize the device performance. To simplify the parameter extraction, metaheuristic approaches are usually made, which otherwise is a cumbersome process. Following these, here investigations are made with the help of such a compact model to extract the operational parameters of P3HT (poly (3-hexylthiophene) based OFETs with electrolytic gate dielectrics using the genetic algorithm (GA) method. The result show that the compact model that was essentially developed in line with the successful models for inorganic material based FETs, can be used as an excellent framework for simulating low voltage OFETs made with both low and high mobility organic semiconductors. Mobility and threshold voltage calculated from the extracted parameters using GA for the two devices having mobility value differences of more than four orders are found to be nicely fitting with the experimental values. These results assume significance to the organic electronic industry as this facilitates the real-time circuit application of OFETs. KEYWORDS: Modeling, Low voltage OFET, Genetic algorithm, Ionic liquid, P3HT

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3