Preparation, Microstructure, and Mechanical Properties of Aluminum Matrix Composite by Accumulating Roll Bonding Method

Author:

Sasaki Gen1,Liu Wen Chuang1,Sugio Kenjiro1

Affiliation:

1. Hiroshima University

Abstract

The ARB (Accumulative Roll Bonding) method is greatly watched as a new severe plastic deformation process that uses only a conventional general rolling machine. The ARB method is a preparation method of ultra-fine-grained, high-strength thin metal and alloy sheets by repeated rolling. The purpose of this study was to clarify the effectiveness of the ARB method as a metal matrix composite manufacturing process. At first, alumina particles and short carbon fibers were used as dispersoids, and pure aluminum was used as the thin plate. Then, the dispersoids were deposited on a pure aluminum plate to 2 vol.% dispersoids. Six of these aluminum sheets were stacked to form a multi-layer composite sheet, which was then cold rolled at a rolling reduction of 67%. After rolling, the sheet composites were cut in half, overlapped, and rolled again. The composites were obtained by repeating this process. When the repetition exceeded 6 times, the dispersoids tended to disperse in the aluminum matrix. In addition, uniform dispersion progressed through further repeat rolling. By repeated rolling, the tensile strength of the composite sheets was greatly improved. In addition, the tensile strength of the composites was higher than that of the ARB-processed monolithic aluminum sheet. The improvement in strength was caused by the refinement of aluminum grains rather than the particle dispersion.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3