Affiliation:
1. Prince Mohammad Bin Fahd University
Abstract
Using machine learning (ML) approaches for the design and manufacturing of materials becomes an emerging technology that may possibly allow us to systematically discover novel materials with promising electromagnetic interference (EMI) shielding properties. Herein, we explored the correlation between input variables such as MXene loading, thickness of nanocomposites films, frequency, and predicted EMI shielding effectiveness (ES) of poly (vinylidene fluoride)/MXene (PVDF/MXene) nanocomposites materials via ML. Two different models of ML including Gaussian process regression (GPR) and support vector machine (SVM) were considered and compared. The results showed that the predicted data by the two models are in good agreement with the experimental values, indicating that the developed ML models are appropriate for predicting properties of nanocomposites materials for EMI shielding applications.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献