Design of Experimental (DOE) Analysis of Silica Sand Processing Using Spiral Concentrator

Author:

Sinaiyah Pugalyenthiran1,Udayakumar Sanjith1,Hussin Hashim1,Ramakrishan Sivakumar1

Affiliation:

1. Universiti Sains Malaysia

Abstract

The main aim of this study on silica sand using a spiral concentrator using the design of experiments DOE) approach is to improve the silica content of the tailing sand for the glassmaking process. Three significant operational parameters of the spiral concentrator, namely feed rate (t/h), solid feed (wt.%), and splitter position (cm), were investigated to observe their effects on the SiO2 grade (%) and recovery of SiO2 (%) in the middlings using Design of Experiments (DOE). The raw sample was sieved to prepare the feed sample in the size range of -600+75µm, which was the suitable particle size range for the glassmaking process. The SiO2 grade (%) of each middling fraction from 33 test runs was determined from XRF analysis. The analysis determined that the feed rate and weight of the solid feed (wt.%) significantly affected the separation, while the splitter position in the investigated range (4.5-5.5cm) showed a negligible effect on the percentage and recovery of SiO2 in the middling fraction. It was observed that a maximum SiO2 grade of 94.98% was achieved at a solid feed of 25%, feed rate of 0.63 t/h, and splitter position of 5.5cm. The highest SiO2 recovery of 89.74% was achieved at the solid feed of 15%, feed rate of 0.45t/h, and splitter position of 5.0cm. A trade-off between the optimized results for SiO2 Grade (%) and recovery of SiO2 (%) responses using overlaid contour plots suggested a feed rate of 0.58 t/h of feed rate and 25 wt. % solid feed regardless of the splitter position. The customized range of parameters is expected to produce 94.51% SiO2 grade (%) and 80.11% recovery of SiO2 in the middling fraction.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3