Effect of Graphene Nanoplatelets on Flexural Behavior of Glass Fiber Reinforced Polymer Composites Subjected to Different Temperatures

Author:

Tudu Suplal1,Velmurugan Ramachandran1

Affiliation:

1. Indian Institute of Technology

Abstract

Glass Fiber Reinforced Polymer (GFRP) Composite are increasing rapidly in Aerospace Industry, Civil and Wind energy sectors, where they can frequently be exposed to different temperature conditions. As the constituent polymer matrix is highly affected by temperature, extreme temperature conditions are critical for GFRP composite structural design. Researchers have recently found nanofillers such as graphene and carbon nanotubes with excellent multifunctional mechanical properties. Graphene Nanoplatelets (GnP) consist of several layers of graphene. GnP is considering an attractive nanofillers as it has improved polymer matrix properties. In this study, the weight percentage of GnP added in GnP-GFRP laminate is 0.25% and 0.5%.GFRP and GnP-GFRP laminates are fabricated by using the hand lay-up method, and the specimens are subjected to a three-point bending test in a thermal chamber with varying the temperature, i.e., 30°C, 50°C, 75°C, and 100°C. This paper investigates the effect of graphene nanoplatelets on the flexural behavior of glass fiber-reinforced polymer composites subjected to different temperatures. Flexural strength and modulus are evaluated, and the appropriate conclusions are determined. GFRP with 0.25% GnP shows higher strength than the neat and 0.5% GnP-GFRP. Here, it has also been shown that flexural strength and modulus decrease significantly with increasing temperature.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3