Leveraging Deep Learning and Grab Cut for Automatic Segmentation of White Blood Cell Images

Author:

Oyebode Kazeem Oyeyemi1

Affiliation:

1. Pan-Atlantic University

Abstract

White blood cell image segmentation provides the opportunity for medical experts to objectively diagnose the medical conditions of patients suffering from Leukemia, for example. Due to the rigorous nature of cell image acquisition (staining process and non-uniform illumination) efficient tools must be deployed to achieve the desired segmentation result. In this paper, a deep learning model is proposed together with a grab cut. The developed deep learning model provides an initial coarse segmentation of white blood cell images. However, the objective of this segmentation is to localize or identify regions of interest from white blood cell images. A bounding is generated from the localized cell image and then used to initiate an automatic cell image segmentation using grab cut. Results of the two publicly available datasets of white blood cell images are considered satisfactory on the proposed model.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3