Feasibility Study of Bio-Composite Foam Preparation from Poly(Butylene Succinate) with Spent Coffee Grounds Using Compression Molding

Author:

Sritapunya Thritima1,Rattanapan Apaipan2,Sapsrithong Pornsri2,Tuampoemsab Surakit2,Suksompoom Pakaon2,Lagjaroensakul Chadaporn2,Dechsiri Patsaphon2

Affiliation:

1. King Mongkut’s University of Technology North Bangkok

2. King Mongkut’s University of Technology North Bangkok

Abstract

Plastic foam is widely used in varying industries due to its light weight, high strength, and good heat insulation. However, most plastic foams are produced from petroleum-based polymers which cannot be naturally degraded and can release aromatic pollution to the environment when they are molten or burned. Therefore, poly(butylene succinate) (PBS) and KMnO4-treated spent coffee grounds (SCG), which are biopolymer and bio-filler, are used to prepare the bio-composite foam in this research by using azodicarbonamide (ACDA) as a chemical blowing agent. The 10, 20, and 30 phr of the treated SCG and the 6 and 10 wt% of blowing agent are compounded with PBS resin using a two-roll mill and foamed by compression molding machine to investigate the possibility of the batch foam production. All bio-composite foams are investigated for both physical and mechanical properties including morphology, compressive strength, abrasion resistance, bulk density, and water absorption. All foams were successfully prepared by a two-step technique in compression molding to melt the compounded PBS pellets first at 160°C, 90 bar and then decompose the ADCA blowing agent to generate foam cells at 200°C, 120 bar. The appearance and morphology of the obtained foams showed that the cells were smaller and more even distribution with the treated SCG addition. The compressive and abrasion resistant properties decreased as the treated SCG increasing, excepted the bio-composite foam with 30 phr of the treated SCG. whereas the addition of ADCA showed an ambiguous trend. Both filler and blowing agent contents caused a somewhat decrease bulk density and increase water absorption.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3