Evaluation of the Malalignment Varus - Valgus in Total Knee Arthroplasty Designed for Deep Knee Flexion Using Knee Kinematic Motion Simulator

Author:

Triwardono Joko1,Rokhmanto Fendy1,Roberto Rahadian1,Kartika Ika1,Saragih Agung Shamsuddin2ORCID,Whulanza Yudan2,Shuib Solehuddin3,Supriadi Sugeng2

Affiliation:

1. National Research and Innovation Agency

2. Universitas Indonesia

3. Universiti Teknologi Mara (UiTM)

Abstract

Revision total knee arthroplasties cause performed aseptic loosening, instability, and polyethylene wear. Separation or removal of the femoral component has been observed and this has the potential to severely damage the polyethylene component. In most cases 90% of the patients examined experienced significant medial or lateral condylar lift at some stage during the gait cycle. Using the MRI, a normal knee has maximum lateral lift is approx. 6.7 mm and maximum medial lift is approx. 2.1 mm, when a varus strees applied at a 90° knee flexion. Elevation of the lateral condyle due to valgus malalignment will distribute more contact force on the medial condyle. In this study, a polyethylene component of a posterior-stabilized right knee joint implant was developed to facilitate a high range of motion (ROM). Malalignment valgus was observed with the axes of knee motion joint implants were varied from 0°, 2°, 3° to 5 and knee bend measurements at 30°, 60°, 90°, 120°, and 150° of knee flexion. Using the knee kinematic motion simulator, the modified polyethylene component resulted in 0° malalignment there is no gap of the femoral component with the polyethylene component, from 30° to 150° of knee flexion. At 2° malalignment, the femoral component was raised by 0.5 mm at a 90° to 150° knee flexion and increased with increasing knee flexion. Maximum gap occurs at 5° malalignment in the amount of 5 mm at 150° of knee flexion. The aim of this study was therefore to evaluation malalignment valgus of the flexed knee using knee kinematic motion simulator, with reference to the tibiofemoral flexion gap. The result that the modified design is expected in an narrow down gap between femoral and polyethylene component used knee kinematic motion simulator, this accommodate deep knee flexion movement in daily activities and reduce the possibility of subluxation and dislocation at the polyethylene component during deep knee flexion. A wide gap between the femoral component and the polyethylene component and a significant amount of contact force in the medial condyle region might be the explanation for polyethylene component damage. It is expected that potential medial or lateral condylar lift at some stage during the gait cycle can be reduced.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3