Morphology and Mechanical Properties of High Density Polyethylene and Ethylene-Methyl Acrylate Copolymer Blends with Organoclay

Author:

Wacharawichanant Sirirat1,Chaweejan Larisa1,Boonsrinui Thanpitcha1,Phankokkruad Manop1

Affiliation:

1. Silpakorn University

Abstract

In this research, the effect of ethylene-methyl acrylate copolymer (EMAC or EMAC30) and clay surface modified with aminopropyltriethoxysilane 0.5-5 wt% and octadecylamine 15-35 wt% (Clay-ASO) on the morphological, mechanical, and thermal properties of high density polyethylene (HDPE) were investigated. The polymer blends and composites were prepared by an internal mixer and then samples were molded by compression molding. The morphology analysis showed that the presence of fibrous surface at the specimen fracture surface of HDPE/EMAC30 blends. The phase morphology of HDPE blends with Clay-ASO 3, 5 and 7 phr was observed the phase separation of EMAC30 and aggregate of Clay-ASO at high EMAC30 content. Young’s modulus of HDPE/Clay-ASO composites increased with increasing Clay-ASO composites. The presence of Clay-ASO did not improve Young’s modulus and tensile strength of HDPE/EMAC30/Clay-ASO composites. The strain at break of HDPE/EMAC30 blends increased with increasing EMAC30 content. The incorporation of EMAC30 and Clay-ASO had no effect on the melting temperature of HDPE blends and composites, respectively. The percent crystallinity of HDPE/EMAC30 and HDPE/EMAC30/Clay-ASO was lower than that of pure HDPE. The addition of EMAC30 and Clay-ASO decreased the degradation temperatures of HDPE/EMAC30 blends and composites.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3