Effect of Nickel Ions Substitution on the Magnetic and Optical Properties of a Nanosized Lithium-Iron Ferrite

Author:

Mazurenko Julia1ORCID,Kaykan Larysa2ORCID,Żywczak Antony3ORCID,Kotsyubynsky Volodymyr4,Boychuk Volodymyra4,Turovska Lilia1ORCID,Vakaliuk Illia1

Affiliation:

1. Ivano-Frankivsk National Medical University

2. G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine

3. AGH University of Science and Technology

4. Vasyl Stefanyk Precarpathian National University

Abstract

This paper reports on the successful synthesis of fine nanoparticles of nickel-substituted lithium-iron ferrites of composition Li0.5-x/2NixFe2.5-x/2O4 (0.2≤ x ≤1.0) by the sol-gel autocombustion method. It has been found that the alternating current (AC) and direct current (DC) conductivity is preferably tuned due to its dependence on temperature and nickel doping. Analysis of the Arrhenius dependences also confirms the appearance of more than one conduction mechanism upon substitution. The predominance of one type of conductivity over another depends on the concentration of the substituting element. Measurement of the magnetic properties has shown that the substitution of Ni2+ can significantly change the saturation and residual magnetization. Samples of composition Li0.4Ni0.2Fe2.4O4 have the highest saturation magnetization (84.08 emu/g), residual magnetization (15.85 emu/g), and the lowest coercive force (0.18 kOe). All the obtained results indicate a significant effect of the substitution of Ni2+ ions on the structure and properties of Li0.5-x/2NixFe2.5-x/2O4 ferrite nanoparticles.Photocatalytic properties have been obtained by the degradation of Methylene Blue dye under illumination with a halogen lamp. It is shown that an increase in the content of nickel ions leads to a change in the type of conductivity: from n-type (unsubstituted lithium pentaferrite) to p-type (with substitution x = 0.8 and higher). These systems are characterized by hopping conduction realized by octa-positions according to the mechanisms Fe3++e-↔Fe2+, and Ni3+↔Ni2++h+. The predominance of one or another mechanism depends on the content of nickel ions. The optical band gap ranges from 1.4 to 2.25 eV. Samples with nickel content x = 0.4 and x = 0.8 have shown the best degradation ability, which is 97% within 160 min for Methylene Blue.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3