The Effect of Laser Heat Treatment and Severe Shot Peening on Laser Powder Bed Fusion Manufactured AISI 316L Stainless Steel

Author:

Hietala Mikko1,Rautio Timo1,Jaskari Matias1ORCID,Gundgire Tejas2,Järvenpää Antti1ORCID

Affiliation:

1. University of Oulu

2. Tampere University

Abstract

In this study the effect of laser heat treatment (LHT) and severe shot peening (SSP) on laser powder bed fusion manufactured AISI 316L stainless steel is investigated. The effect of LHT and SSP on the hardness of the surface of the PBF-LB 316L is studied performing microhardness measurements. Microstructure is evaluated in the EBSD investigation. The residual stresses will be measured to determine the influence of LHT and SSP. The effects of LHT and SSP on tensile and bending fatigue strength will be evaluated. LHT altered the microstructure 200 µm from the surface. The grain structure on the surface was more ordered and no substructure or local strains were present. Finer grain features adjacent to the sample surface were found, which are most likely caused by effective recrystallization and fast cooling. The grain morphology was left relatively unchanged when SSP was applied on LHT surface. However, local deformation has occurred on the surface, and clear orientation gradient within grains is seen. LHT had no effect on the hardness. SSP increased the surface hardness by 205%. LHT decreased the yield or tensile strength of the PBF-LB 316L. Residual stress measurements showed that SSP induced a high compressive stress in the PBF-LB 316L. LHT and SSP significantly improved the fatigue strength of the PBF-LB manufactured 316L.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3