Swelling Pressure Prediction of Compacted Unsaturated Expansive Soils

Author:

Ikechukwu Aneke Frank1,Mostafa Mohamed M.H.1

Affiliation:

1. University of KwaZulu-Natal

Abstract

Generally, expansive soils undergoes significant volumetric deformation, which causes structural damages to existing infrastructures. Damages due to expansive activities are noticeable in pavements, buildings, earth dams, retaining walls etc. To estimate swelling stress, accurate assessment of soil absorption of water over time, with respect to soil volumetric change is required. However, the time frame requires for completion of swelling cycle is relatively long. With this in view, several attempts with great success have been made by researchers to predict swelling pressure of expansive soils using soil mechanics index properties. In this study, the interrelation between unsaturated soil mechanics property i.e. Matric suction () and geotechnical soil indexes were utilized to develop three predictive multi-regression equation for swelling stress. Series of Atterberg limit tests, matric suction tests, free swell index (FSI) tests and zero swelling tests (ZST) were performed to obtain the dependent and independent variables for the multi-regression analysis. Based on the experimental results, empirical relationships were developed to determine swelling stress as a function of matric suction, gravimetric moisture content (GMC), FSI, dry density and plasticity index using mathematical software package (NCSS11). The developed predictive multi-regression models were used to estimate the experimental swelling stress (. The scattered plot showed good agreement between the measured and predicted data, with coefficient of determination (R2) and mean square error (MSE) of 0.9443, 0.9793, 0.9310 and 0.0051%, 0.0021% and 0.0067% for models 1, 2 and 3 respectively.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Reference47 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing the impact of plant fibers on swelling parameters of two varieties of expansive soil;Case Studies in Chemical and Environmental Engineering;2023-12

2. AI-Based Estimation of Swelling Stress for Soils in South Africa;Transportation Infrastructure Geotechnology;2023-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3