Toxicity Assessment of Colloidal Nanofertilizers Using Zebrafish Embryo Model through Acute Toxicity Assay

Author:

Fadzil Nadia Izati1,Anoam Suwanty Ridzuan2,Mohd Rosmi Mohd Nor3,Mohd Anuar Mohd Firdaus1,Masdor Noor Azlina3

Affiliation:

1. Universiti Putra Malaysia

2. University Kebangsaan Malaysia

3. Malaysian Agricultural Research and Development Institute (MARDI)

Abstract

Chemical fertilizers are used in large quantities to boost the plant's development. Approximately 90 % of the fertilizer used is lost due to runoff and other processes, resulting in surface and groundwater contamination downstream. Nanofertilizers are believed to be more ecologically friendly and effective when used in small quantities. The use of nanomaterials in agriculture is not always successful. Nanoparticles may readily be discharged into water or the air, where they are ingested by living creatures, causing toxicity in humans, animals, and aquatic life. The aquatic environment has been contaminated with fertilizer runoff, which has been found to have fatal and sublethal impacts on aquatic species. In this work, the harmful effects of NPK-nanofertilizers were determined using the zebrafish embryo toxicity test (ZFET). To summarize, all nanofertilizers were dissolved in deionized water and diluted into concentration ranges in embryo medium. The toxicity of the fertilizer sample was next assessed on the early development of zebrafish embryos from 24 hours post-exposure (hpe) to 120 hpe. The survival rate, LC50, hatching rate, heart rate, and teratogenicity were all assessed. Toxicity of nanofertilizers T1, T2, and T3 to zebrafish embryos was moderate, with LC50 values of 45.7, 38.56, and 19.52 mM, respectively. While no teratogenic defect was seen in embryos treated with the respective samples from 0 hpe to 120 hpe, there was no teratogenic defect observed in the embryos treated with the respective samples from 0 hpe to 120 hpe. The larval heartbeat and hatching rate are unaffected by the nanofertilizer samples. As a result, the current study lays the groundwork for understanding the developmental toxicity of nanofertilizers in zebrafish embryos. Because little is known about the harmful effects of nanofertilizers on aquatic vertebrate species, this knowledge is essential for future research evaluating aquatic risk from nanofertilizers.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3