Nanofluid Heat Transfer Coefficient Enhancement Using Connectors

Author:

Herrera Gabriel1,Hamel Zach1,Wohld Jake1,Palmer Michael1,Vafaei Saeid1,Gaytan Cristian1

Affiliation:

1. Bradley University

Abstract

The requirement for effective cooling of modern electrical and mechanical components has increased due to the desire for more compact and efficient designs. Thermal systems have used working fluids as a method for cooling systems for many years. However, technological improvements have dictated that working fluids must be more efficient for their applications. Researchers presented nanofluids as a possible solution for this issue, and they have gained a lot of attention due to their capability to enhance the heat transfer coefficient in miniaturized cooling or heating systems. The main purpose of this paper is to enhance the heat transfer coefficient in micro scales by encouraging the random motion of the particles in the nanofluid. This is accomplished by placing a nozzle between two micro-channels. The random motion of the particles is enhanced within the nozzle, increasing the heat transfer coefficient in the microchannel downstream as a result. In addition, the effects of characteristics of nanofluid are discussed briefly.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3