Tensile Properties Characterisation of Hybrid Luffa/GCW Fiber Reinforced Polymer Composite

Author:

Afiq Mohd Khairul1,Kuan Hoo Tien Nicholas1,Hassan Mohamad Zaki2

Affiliation:

1. Universiti Malaysia Sarawak

2. Universiti Teknologi Malaysia

Abstract

Extensive research has been conducted on fiber reinforced polymer (FRP) composites, which have demonstrated superior mechanical properties compared to their individual components. In order to add on to current research trends, the use of ground coffee waste (GCW) and Luffa fibers reinforced polyethylene (PE) composites were fabricated to produce a hybrid natural FRP composite. Tensile testing of the composite indicates that the optimum fiber volume to be between 15% and 35%, as the tensile strength exhibited 9.32 MPa and 8.75 MPa, respectively. Similarly, the tensile modulus of the fabricated composite peaked at 25% with 238 MPa, then declined to 173 MPa at 35%. This indicates that the fibers effectively reinforce the polymer matrix, but once the composite reaches its optimal fiber volume, a decrease in both tensile strength and tensile modulus is observed. The reduction in tensile properties can be attributed to an uneven distribution of load-bearing capacity throughout the composite, as the fibers are no longer able to fully support the matrix once the optimal fiber volume is reached. The specific tensile strength and specific tensile modulus also shows that with the inclusion of Luffa fiber and GCW microfiber contributed to a lighter weight composite. In a nutshell, the hybrid composite fabricated using 25% fiber volume exhibited a tensile strength almost similar to its neat matrix counterpart, though has a noteworthy value in terms of its tensile modulus. The hybrid composite can be as strong in terms of tensile strength, but far more significant in its rigidity, in comparison to the neat polyethylene laminate. Therefore, it showed that the hybrid natural Luffa/GCW FRP has the potential in the engineering industry, such as lightweight furniture, household appliances, automotive parts, and other composite engineering applications.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3