Recycling of Synthetic Waste Wig Fiber in the Production of Cement-Adobe for Building Envelope: Physio-Hydric Properties

Author:

Akinwande Abayomi Adewale1,Adediran Adeolu Adesoji2,Balogun Oluwatosin Abiodun1,Adesina Olanrewaju Seun2,Owa Adebayo Felix3,Ademati Akeem Oladele4,Olorunfemi Bayode Julius3,Emmanuel Ajisegiri2

Affiliation:

1. Federal University of Technology

2. Landmark University

3. Federal University Oye-Ekiti

4. Federal University of Technology Akure

Abstract

Waste wigs are often disposed of in their volume in landfills, thus constituting a nuisance to the environment. Recycling these wigs in masonry bricks is a way via which they can be recycled and reused. On such premises, waste wig fiber (WWF) was recycled by incorporating it into the cement-sand-clay composite mix for masonry brick production. The challenges masonry bricks face include shrinkage and water susceptibility, hence the contributory effect of WWF on physio-hydric properties was assessed in this study. Sample preparation entailed the blending of cement, sand, clay soil, and waste wig fiber. The control mix was prepared by commixing clay with 10 % cement (by clay volume) and 20 % sand (by clay volume). Other mix proportions were reinforced with 1, 2, 3, 4, and 5 % WWF by clay volume. Prepared composites brick samples were cured for 28 and 56 days and tested for physio-hydric properties. Results revealed that WWF contributed significantly to improving hydro-resisting properties by minimizing porosity, water and moisture absorption, capillary suction, and water permeability. Furthermore, WWF contributed to dimensional stability by reducing shrinkages and weight loss. Hydration time impacts significantly in reducing apparent porosity, water permeability coefficient, moisture and water absorption, capillary suction coefficient; increasing apparent density, weight loss, linear, and volumetric shrinkage. Prolonged time in water ensued higher water absorption. The general outcome depicts that WWF showed promising performance in bricks developed in enhancing water and moisture susceptibility resistance and promoting mass and dimensional stability; hence, it can be employed in reinforcing cement adobe bricks.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3