Laser-Powder Bed Fusion of Inconel 718 Alloy: Effect of the Contour Strategy on Surface Quality and Sub-Surface Density

Author:

El Hassanin Andrea1,Napolitano Francesco1,Trimarco Carmela1,Manco Emanuele1,Scherillo Fabio1,Borrelli Domenico2,Caraviello Antonio2,Squillace Antonio1,Astarita Antonello1

Affiliation:

1. University of Naples "Federico II"

2. Sòphia High Tech

Abstract

The in-situ contour strategy during Laser-Powder Bed Fusion (L-PBF) process remains one of the most promising solutions to improve the poor surface quality of the parts. On the other hand, it is well established that contour step affects the formation of sub-surface defects. The aim of this work is to assess the entity of sub-surface defects during the Laser-Powder Bed Fusion of Inconel 718 samples for which different contour processing conditions are considered. Cubic samples with 10 mm side were produced through L-PBF using a Concept Laser Cusing M2 L-PBF machine. The samples were printed with fixed bulk laser parameters, adopting a layer thickness of 30 μm and a chessboard laser scanning strategy. The in-situ contour conditions were changed in terms of laser scanning speed and hatch zone border. Afterwards, the samples were analyzed in terms of surface roughness (Sa) and sub-surface density through confocal microscopy. The results revealed that the surface roughness was the most affected output as a function of the varied process parameters, including the sample position on the building platform, with values ranging from 13 to 32 μm. On the other hand, the sub-surface density was always higher than 99%.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3