Exploring the Potential of α-MnO<sub>2</sub>/ Carbon Nanotubes for Improved Oxygen Reduction Reaction Performance at the Cathode of Alkaline Fuel Cells

Author:

Ullah Abid1,Hussain Basharat2,Khan Muhammad Raheel3,Alam Kamran4,Humayun Muhammad5,Arif Muhammad3

Affiliation:

1. USPCAS-E UET Peshawar

2. Jeonbuk National University

3. University of Engineering and Technology Peshawar Pakistan

4. Sapienza University of Rome

5. University of Engineering and Technology Peshawar

Abstract

In the field of fuel cell technology, the development of cost-effective catalysts is crucial for the commercialization of Alkaline Membrane Fuel Cells (AMFCs). Platinum (Pt) has traditionally been employed as the catalyst in AMFCs, but its high cost poses a major barrier to widespread adoption. In this study, a new catalyst material was developed by incorporating Manganese Dioxide (α-MnO2) into Carbon Nanotubes (CNTs) using hydrothermal synthesis techniques. The synthesized catalyst was characterized using Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD), and its electrocatalytic activity was evaluated through Linear Sweep Voltammetry (LSV) and CV through Rotating Disc Electrode (RDE) experiments. The results showed that the α-MnO2-CNT composite displayed strong durability in the alkaline environment and high electrocatalytic activity for oxygen reduction reaction (ORR). The LSV measurements revealed a current density of -4.1 mA/cm2 and an overpotential of -0.3V relative to Standard Calomel Electrode (SCE) in a 0.1M KOH electrolyte. Additionally, the α-MnO2-CNT composite displayed high methanol tolerance and long-term stability compared to commercial Pt/C catalysts. This study demonstrates that the use of α-MnO2-CNT as a cost-effective alternative to Pt has the potential to facilitate the commercialization of AMFC technology.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3