Affiliation:
1. USPCAS-E UET Peshawar
2. Jeonbuk National University
3. University of Engineering and Technology Peshawar Pakistan
4. Sapienza University of Rome
5. University of Engineering and Technology Peshawar
Abstract
In the field of fuel cell technology, the development of cost-effective catalysts is crucial for the commercialization of Alkaline Membrane Fuel Cells (AMFCs). Platinum (Pt) has traditionally been employed as the catalyst in AMFCs, but its high cost poses a major barrier to widespread adoption. In this study, a new catalyst material was developed by incorporating Manganese Dioxide (α-MnO2) into Carbon Nanotubes (CNTs) using hydrothermal synthesis techniques. The synthesized catalyst was characterized using Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD), and its electrocatalytic activity was evaluated through Linear Sweep Voltammetry (LSV) and CV through Rotating Disc Electrode (RDE) experiments. The results showed that the α-MnO2-CNT composite displayed strong durability in the alkaline environment and high electrocatalytic activity for oxygen reduction reaction (ORR). The LSV measurements revealed a current density of -4.1 mA/cm2 and an overpotential of -0.3V relative to Standard Calomel Electrode (SCE) in a 0.1M KOH electrolyte. Additionally, the α-MnO2-CNT composite displayed high methanol tolerance and long-term stability compared to commercial Pt/C catalysts. This study demonstrates that the use of α-MnO2-CNT as a cost-effective alternative to Pt has the potential to facilitate the commercialization of AMFC technology.
Publisher
Trans Tech Publications, Ltd.