Investigation of Electrode Location to Improve the Accuracy of Wearable Hand Exoskeleton Trainer Based on Electromyography

Author:

Triwiyanto Triwiyanto1ORCID,Rahmawati Triana1,Pawana I Putu Alit1,Maulidia Evrinka Hikaristiana1

Affiliation:

1. Poltekkes Kemenkes Surabaya

Abstract

EMG signal has a random and stochastic characteristics, so it is difficult to predict the amplitude. Furthermore, the EMG signal depends on the electrodes location. Therefore, a proper muscle selection determines the system's accuracy value. The purpose of this study was to investigate the exact location of the electrodes to improve the accuracy of the wearable hand exoskeleton trainer based on electromyography (EMG) signal control. The main advantage of the results of this study is that the most dominant muscle was found in the development of a wearable hand exoskeleton based on an EMG signal threshold. Therefore, the model can be controlled using a single electrode pair which can further be applied using a low-cost microcontroller. In this study, ten respondents were involved in the data acquisition. The discovery of the dominant muscle was carried out by investigating the dominant EMG signal in three muscles (Abductor pollicis longus, extensor digitorum) that plays a role in the open and close movements of the hand exoskeleton. Dry electrode was used to detect EMG signal activity on the skin surface. The EMG signal was then extracted using the root mean square (RMS) feature. After the evaluation, the results showed that the flexor digitorum superficialis muscle in the rest position produced higher accuracy value than the other muscles, which was 96.63±0.67%. In the implementation, the product of this research can be applied for rehabilitation steps in post-stroke patients which is carried out either in a medical rehabilitation unit or at home independently.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3