Evaluation of the Rheological Behaviour of Magnetorheological Fluids Combining Bulge Tests and Inverse Analysis

Author:

Cusanno Angela1,Piccininni Antonio1,Guglielmi Pasquale1,Palumbo Gianfranco1

Affiliation:

1. Politecnico di Bari

Abstract

Magnetorheological Fluids (MRFs) are included in the so called “smart materials”: they are suspensions of magnetically responsive particles in a liquid carrier, whose rheological behaviour (e.g., its viscosity) can be changed quickly and reversibly if subjected to a magnetic field. Their application as forming medium in sheet metal forming processes is gaining interests in the recent years since the thickness and the strain distribution on the formed part can be affected by properly changing the properties of the MRF. In order to widely adopt MRFs in such processes, the evaluation of their rheological behaviour according to the applied magnetic field plays a key role. But there are still few works in the literature about the most effective way to characterise the MRFs to be used in sheet metal forming applications.In this work, the rheological behaviour of a MRF is carried out by means of an inverse analysis approach using data from bulge tests performed using an MRF as forming medium. Bulge tests were conducted on sheets having known properties using an equipment with a solenoid to generate the magnetic field, which was specifically designed and manufactured. Pressure rate and magnetic flux density were varied according to a Design of Experiments (DoE) while the strain experienced by the sheet material was acquired by means of a Digital Image Correlation (DIC) system in order to compare it with the numerical one. In particular, the fitting between numerical and experimental data was obtained by changing the MRF’s rheological properties using an inverse analysis technique. The proposed methodology allows to evaluate the MRF behaviour at different levels of both magnetic field and pressure rate, which are determinant for the FE simulation of sheet metal forming processes.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3