Electrochemical Studies on Poly(Ethylene Oxide) Based Gel-Polymer Electrolytes for Magnesium-Ion Batteries

Author:

Jathushan V.1,Jayamaha J.H.T. Bandara1,Wijayasinghe H.W.M.A.C.2,Vignarooban K.1

Affiliation:

1. University of Jaffna

2. National Institute of Fundamental Studies

Abstract

Research and development works in the field of multi-valent metal-ion batteries are intensified these days because of the abundance of multi-valent elements such as magnesium, aluminum, calcium and so on in the Earth’s crust. Magnesium-ion batteries are particularly important, because they have high theoretical volumetric capacity (3832 mAh cm-3) compared to that of well-known lithium-ion batteries (2062 mAh cm-3). However, there are potential challenges, typically, designing suitable electrolytes with sufficient ambient temperature ionic conductivities is a major challenge. In this work, a set of gel-polymer electrolytes based on poly (ethylene oxide) (PEO) host polymer and magnesium acetate (Mg(CH3COO)2) ionic salt have been synthesized and characterized by electrochemical impedance spectroscopy (EIS), DC polarization and linear sweep voltammetry (LSV) techniques. Among the compositions studied in this work, the optimized PEO-Mg(CH3COO)2-EC-PC electrolyte (6:14:40:40 wt.%) showed an ambient temperature ionic conductivity of 6.1x10-5 S cm-1. Ionic conductivity vs inverse temperature showed Arrhenius behavior with almost same activation energies (0.15 - 0.18 eV) for all the compositions. DC polarization studies performed with stainless steel blocking electrodes under an externally applied voltage of 1V showed that the highest conducting composition is dominantly an ionic conductor with an ionic transference number of 0.99. The electronic contribution to conductivity was found to be almost negligible, which is desirable to avoid short circuits within the cell. The LSV test on highest conducting composition revealed that the electrochemical stability window of these electrolytes is about 2.2 volts.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3