Affiliation:
1. Graz University of Technology
2. Voestalpine Stahl GmbH
Abstract
The susceptibility of advanced high-strength steels (AHSS) to hydrogen embrittlement (HE) limits the broad utilization of these materials for body-in-white (BIW) components. The considerable decrease of both ductility and toughness due to local hydrogen accumulation inside of formed components may cause unpredictable time-delayed failure. In particular deep-drawn and punched AHSS components are prone to hydrogen absorption. This work investigates the influence of plastic deformation on hydrogen absorption of dual phase (DP) steels. For that purpose, tensile samples were machined out of three commercial 1.2 mm-thick DP sheets with ultimate tensile strengths of 626 MPa, 826 MPa and 1096 MPa. Samples were uniaxially pre-strained to 2 %, 5 %, 10 %, 15 % and 20 %. After pre-straining the samples were electrochemically charged with hydrogen, and the actual hydrogen contents were determined using a thermal desorption analyser (TDA). Before and after charging, the hardness of the samples was measured and the uniaxial quasi-static tensile properties were determined. In order to quantify the influence of plastic deformation on HE, slow strain rate tests (SSRT) were performed. The results of the tests were correlated with the fraction of martensite determined for each of the three steels.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献