Controlled Process of Radiation-Induced Grafting by Chemical Vapour Deposition for the Synthesis of Metal Adsorbent

Author:

Othman Nor Azillah Fatimah1ORCID,Selambakkannu Sarala1,Tuan Abdullah Tuan Amran2

Affiliation:

1. Malaysian Nuclear Agency

2. Universiti Teknologi Malaysia

Abstract

Combination of high energy radiation and chemical vapour deposition in the grafting process for the synthesis of metal adsorbent was investigated. Radiation-induced grafting of glycidyl methacrylate onto kenaf fiber was performed in vapour phase to develop adsorbent for removal of aluminum from aqueous solution. Morphological changes of cross-section kenaf fiber was observed via scanning electron microscope and the thickness of co-monomer in the final graft co-polymer was determined. The comparison in cross-section morphology between ungrafted kenaf fibers and grafted kenaf fiber shows approximately 3.88 [μm] thick of additional grafted layer. The functionalization of the grafted fiber using imidazole was calculated grametrically and verified by elemental analysis. Imidazole has proven to be effective on the adsorption of aluminum ion. It was found that the adsorbent could remove more than 99% aluminum with the highest adsorption capacity of 4.93 [mg/g] at pH 4 and 60 minutes reaction time.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3