Evaluating Thermal Performance and Environmental Impact of Compressed Earth Blocks with Cocos and Canarium Aggregates: A Study in Douala, Cameroon

Author:

Ganou Koungang Bernard Morino1ORCID,Courard Luc1,Tatchum Defo Ulrich2,Ndapeu Dieunedort2,Njeugna Ebénézer2,Attia Shady3

Affiliation:

1. University of Liège (ULiège)

2. University of Douala

3. University of Liege (ULiège)

Abstract

A novel low-cost earthen construction system integrating biosourced aggregates is proposed for houses’ erection of low-income households. This study is based on in-situ measurements on two representative test cells constructed in Douala, with a typical hot and humid climate. One of these buildings is made with a hollow cement block as a reference, and the other with biosourced earth bricks modified with Cocos nucifera and Canarium schweinfurthii aggregates. Dynamic thermal simulations of the two test cells were performed using the EnergyPlus building performance simulation program. The results are based on measuring air temperature and humidity, and the simulation leads to defining the discomfort hours and the annual energy consumption. The adaptive ASHRAE 55 thermal comfort model was used to evaluate the comfort conditions. The results show that air conditioning systems provide the best comfort systems with minimums of about 95% for plastered and unplastered wall construction systems. Biosourced compressed earth brick constructions offered the best thermal performance with comfort ranges of around 96% and 44% for air conditioning and natural ventilation, respectively. In terms of energy consumed, there was a gain of about 100 kWh over the year. Energy consumption is lower in the biosourced compressed earth brick building than in the hollowed cement block building: this one offered the lowest comfort range of about 40% in natural ventilation. The construction provisions were considered for the life cycle assessment, and two scenarios describing the origin of the cement raw materials were considered. It can be seen that cement accounts for more than 95% of the impacts for both construction systems, as well as for the scenarios of its origin. In all situations, the hollowed cement block construction presented the highest impact on the global warming potential: 66 KgCO2eq and 89 KgCO2eq, respectively, without plaster and with plaster. It can also be seen that the plastered layer had a carbon footprint (in terms of Green House Gas Emissions (GHG emissions)) of almost 40% on the overall functional unit. Canarium Schweinfurthii and Cocos Nucifera materials accounted for only 1% of the overall impact.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Reference41 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3