A Study of Annealing Effects on the Joints of a Rotary Friction Welds of AISI 1030 Steel

Author:

Trung Pham Quang1,Khanh Bui Duy1ORCID,Qui Dao Duy1

Affiliation:

1. Ho Chi Minh City University of Technology (HCMUT)

Abstract

This study is concerned with the post-heat treatment of rotational friction welds. AISI 1030 carbon steel parts are welded by rotational friction welding (RFW). The welding process parameters include friction pressure (P1), friction time (T1); Forging pressure (P2), forging time (T2). During the friction phase, the rotational speed is 1450 rpm; after that, the welding parts is stopped immediately and pressed together. The weld samples will be annealed at 650 °C for 4 hours. The change in the properties of the material of a RFW weld joint such as hardness, tensile strength, bending strength as well as grain size when undergone a heat treatment process was investigated. The obtained results show that the annealing process strongly changes the mechanical properties through altering the microstructure of the weld. Particularly, the weld hardness and tensile strength decrease significantly while the bending strength and elongation increase as a result of the increase in grain size and uniformity of the phase distribution. The annealed weld has a hardness reduction of nearly 20% and a tensile strength reduction of about 24% compared to the original weld. The elongation in the tensile test increases from 1.1% for weld specimens to 2.54% for post-heat-treated welds. In the bending test, the maximum load before the appearance of cracks on the specimen increased by about 42% when comparing the post-heat and original weld specimens.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3