Friction Impact on the Accuracy of the Dependence of Micro-Hardness on Plastic Deformation in Testing Metals under Uniaxial Compression

Author:

Tsvetkov Yuriy1,Gorbachenko Evgeniy1,Larin Roman1

Affiliation:

1. Admiral Makarov State University of Maritime and Inland Shipping

Abstract

Two sets of cylinder specimens with a height to diameter ratio of 1.5 made of annealed technical copper and AK12pch silumin were tested for uniaxial compression to different degrees of plastic deformation. At the first stage of the experiments, the ends of the specimen were ground on skins of different grain sizes and polished. Then the micro-hardness of the ends of each sample was measured. Micro-hardness measurements were carried out by the Vickers method at three loads on the indenter: 0.196, 0.490, and 0.980 N. At the second stage, the samples were cut along the meridional section, each sample was poured with a compound based on epoxy resin into an individual mold so that the meridional section of the cut sample came out onto the surface of the mold. After the process of grinding and polishing the meridional section, the micro-hardness of the center of the section was measured under the same loads that were used for measurements at the ends. At the third stage, the dependences of the micro-hardness on the intensity of plastic deformation were made. A comparative analysis of the indicated dependences, made from the results of measurements at the ends of the specimen and the surface of their meridional sections, showed that friction at the ends of the specimen during compression has a significant effect on the position of the dependence “micro-hardness - plastic deformation”. The evaluation of hardening based on the micro-hardness of the ends leads to significant errors.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3