Numerical and Experimental Investigation of Fluidized Bed Hydrodynamics at Elevated Temperatures

Author:

Njuguna Fredrick1,Ndiritu Hiram1,Gathitu Benson2,Hawi Meshack1,Munyalo Jotham1

Affiliation:

1. Jomo Kenyatta University of Agriculture and Technology

2. Jomo Kenyatta University of Agriculture and Tecnology

Abstract

Fluidized bed gasifiers operate at elevated temperatures, and experimental measurements for the hydrodynamic parameters at high temperatures are difficult and time consuming, making computational fluid dynamics simulation useful for such investigation. In this study, Opensource computational fluid dynamics code, OpenFOAM, was used to investigate temperature effect on the fluidized bed hydrodynamics on a 3D fluidized bed model using Eulerian-Eulerian approach. Silica sand of particle sizes of 500, 335 and 233 m was used as the bed materials under temperatures between 25 and 400 °C. To validate the simulation model, a laboratory scale fluidized bed unit was used to conduct experiments for the same range of temperature and sand particle sizes. The results revealed that the temperature of the bed materials greatly affect fluidized bed hydrodynamics. The minimum fluidization velocity increased with the sand particle diameter but decreased with the temperature. On the other hand, the bed porosity at the minimum fluidization point increased marginally with both the temperature and the particle size of the bed materials. Further analysis showed that the expanded bed height increased with the temperature for a specific superficial velocity while the bubbles grew in size with both the air flow rates and the temperature. The numerical model results were compared with the experimental results based on minimum fluidization velocity, bed porosity and pressure drop at the minimum fluidization point. The hydrodynamic results of the numerical model were in good agreement with the experimental results.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3