Fabrication of Solar Cell Based on Copper Oxide Nanostructures Deposited Using Reactive Pulsed Laser Deposition

Author:

Alhasan Sarmad Fawzi Hamza1,Abduljabbar May A.1,Alshaikhli Zahraa S.1ORCID,Fakhri Makram A.1,Parmin Nor Azizah2

Affiliation:

1. University of Technology

2. Universiti Malaysia Perlis

Abstract

The deposition of copper oxide utilizing a pulsed laser deposition technique employing a reactive pulsed laser as a deposition technique is the subject of this study. The wavelength of the pulsed lase used are 1064 nm, the pulse duration is 10 ns, the laser energy of 1000 mj with different substrate temperatures (200, 3300, and 400 oC). The influence of the substrate tampering on the morphological, structural, Photolumencence, and the electrical, and attributes of the fabricated solar cell was recorded and studied using a high purity cupper target and deposited on porous silicon substrates. When compared to a crystalline silicon surface, the results of AFM show a higher possibility of better absorption and hence lower reflection. The presented results revealed the properties of the fabricated solar cell as well as a noticeable improvement in the solar cell's efficiency, whether copper deposition was used or not. The deposited films at 1064 nm were monoclinic structures with a preference for the (111) direction, according to X-ray diffraction (XRD) examination. SEM were used to study the production of nanostructures on the substrate's surface, which led to the formation of small-sized and nanostructured films.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3