Effect of High-Temperature Tempering on Microstructure and Mechanical Strength of Laser-Welded Joints between Medium-Mn Stainless Steel and High-Strength Carbon Steel

Author:

Hamada Atef S.1,Ghosh Sumit1,Ali Mohammed1,Jaskari Matias1ORCID,Järvenpää Antti1ORCID

Affiliation:

1. University of Oulu

Abstract

The strengthening effect due to high-temperature tempering (HTT) at 700 °C on the microstructure and mechanical properties of welded joints between medium-Mn stainless steel (MMnSS) and high-strength carbon steel (CS) was studied. The microstructure of the weldments was investigated using Laser and scanning electron microscopes. An Electron probe microanalyzer (EPMA) was used to assess quantitatively the elemental distribution profiles of alloying elements within the weld zone. The strengthening precipitates induced during welding and HTT were characterized by transmission electron microscopy (TEM). Uniaxial tensile tests and microindentation hardness (HIT) measurements of the weld joints were conducted to evaluate the strengthening effect. Fully fresh-martensite and fine-tempered martensitic structures were promoted in the as-weld and HTT processes, respectively. The HTT structure exhibited a remarkable improvement in mechanical properties (a better combination of yield and tensile strength together with moderate ductility) compared to its weld counterpart. TEM investigation revealed that various types of precipitates have been promoted in the structures of the weld and HTT, e.g., nanosized vanadium and chromium carbides. It is apparent that the proposed HTT of the joints is an effective treatment for improving the mechanical properties due to inducing the formation of fine interphase precipitates, resulting in enhanced mechanical strength of the joints.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3