The Effect of Silica Powder Based on Methyltrimethoxysilane and Silica Sand as a Hydrophobic Material

Author:

Mughayyirah Yuniar1,Silvia Linda1,Zainuri Mochammad1

Affiliation:

1. Institut Teknologi Sepuluh Nopember (ITS)

Abstract

In this research, a hydrophobic surface has been successfully created using a mixture of silica sand and methyltrimethoxysilane (MTMS) precursor. This research aims to determine the effect of varying the volume of MTMS on the hydrophobic surface. The MTMS as silica precursor was synthesized with Stöber method. The variation used is the volume of the MTMS precursor, while the silica from silica sand is made constant. The volume variation of the MTMS precursor is 9.5 ml, 19 ml, 28.5 ml and 38 ml. The MTMS/SiO2 composite which has been synthesized then get mixed with steel ship paint and coated on the steel plate surface as a topcoat. The MTMS/SiO2 composite was further characterized by X-ray Powder Diffraction (XRD), Scanning Electron Microscopy (SEM), Water Contact Angle (WCA), and Atomic Force Microscope (AFM) which were employed to investigate crystal structure, morphology of particle, hydrophobicity on a surface, and topography of the three-dimensional surface layer respectively. The type of liquid used in the WCA characterization is seawater. XRD characterization results show that silica sand has a quartz phase, MTMS has an amorphous phase and MTMS/SiO2 composite tends to have an amorphous phase. SEM characterization show that the particle size of silica sand that has been mixed with MTMS is around 8 – 20 μm. WCA characterization show that the addition of silica powder on the topcoat increase surface roughness and WCA, so that the steel plate surface has good hydrophobic properties. The highest water contact angle obtained in this research was 109o by seawater.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3