Electrophoretic Deposition of Nanohydroxyapatite on Homogenized Magnesium Based Alloy for Biomedical Applications

Author:

Sadiq Taoheed Olohunde1,Sudin Izman1,Alsakkaf Ahmed1,Idris Jamaliah1,Fadil Nor Akmal1

Affiliation:

1. Universiti Teknologi Malaysia

Abstract

Magnesium (Mg) alloys are promising biodegradable implant materials. If successful, they do not require second surgical operation for their removal. However, the focus of this study is to address the limitation of fast degradation rate (DR) which hinders the clinical application of Mg alloys. The bio-corrosion rate of any intermetallic alloy is related to its beta (β) phase volume fraction. Thus, homogenization heat treatment (HHT) was carried out to reduce the β phase. The influence of β phase and the hydroxyapatite powders (HAp) was employed to slow down the initial DR of Mg AZ91 alloy. Samples were cut from Mg grade AZ91 alloy ingot in 10mm x 10mm x 3mm dimension. The samples were prepared and divided into two; the first part was classified as as-received sample (sample a) while the second one was processed for HHT. HHT was carried out at 410°C/10h, cooled inside the furnace and named as homogenized sample (sample b). The HAp was synthesized using a simple wet chemical precipitation technique (SWCPT) and deposited on sample b via electrophoretic deposition (EPD) at different voltages with different deposition times. The HAp, uncoated and coated samples were characterized. Potentiodynamic polarization (PP) and immersion tests were carried out in stimulated body fluid (SBF) to estimate the DR and in vitro bioactivity of Mg AZ91 respectively. The results revealed a significant drop in DR from sample a (1.421 mm per year) to coated sample h (3.73 x 10-4 mm per year). Keywords: Magnesium alloy, biodegradable implants, beta phase, homogenization heat treatment, hydroxyapatite, electrophoretic deposition.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3