Fabrication of Paper-Based Silver Nanoparticle (AgNP) Sensors for Smartphone-Based Colorimetric Detection of Cu (II) in Water

Author:

Gomeceria Mich Adrian D.1,Miranda Ma. Lorena Isabel C.1,Lopez Edgar Clyde R.1ORCID,Perez Jem Valerie D.1

Affiliation:

1. University of the Philippines Diliman

Abstract

Detection of heavy metals in water has long been a key area of study due to the adverse health effects these substances may bring. Multiple methods of detecting heavy metals have already been established. Though these methods are highly selective and can detect heavy metals in trace amounts, they commonly require specialized equipment. Thus, producing an inexpensive, reliable, and convenient sensor that could be used for point-of-need applications is of great interest. This study focuses on fabricating paper-based silver nanoparticle (AgNP) sensors for the smartphone-based colorimetric detection of Cu2+ ions in water. Polymer-decorated AgNPs functionalized by chitosan, glutaraldehyde, and polyethyleneimine were used as the main sensing mechanism for the paper-based sensors. Various fabrication methods were tested, and the optimal fabrication method was through the rectangular soak method with a total of 5 coatings as it produced the most uniform sensors. The calibration curve was studied over concentrations from 0.5 mM to 50 mM of Cu2+ across multiple parameters. It was found that there was a linear correlation between the Euclidean distance measured in reference to the blank filter paper against the concentration of copper in the analyte. The calibration curve exhibited a dynamic linear range between 2 mM to 28 mM of Cu2+ with R2 = 0.99789. The LOD and LOQ were reported at 94.9438 ppm and 316.4793 ppm, respectively. Lastly, selectivity studies were also performed to determine the sensor’s response to other metal ions. It was found that the response of the sensor to Cu2+ was significantly different from those elicited by Ni2+, Cd+, Mn2+, Ca2+, Mg2+, Sn2+, K+, Cr3+, Al3+, Ba2+, Na+, Zn2+, Fe3+, and Fe2+. The study demonstrated its strong potential as rapid on-site detection method for Cu (II) in industrial wastewater.

Publisher

Trans Tech Publications, Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3