Reaction Kinetics Investigation of Ni Ohmic Contacts on N-Type 4H-SiC

Author:

Ge Nian Nian1,Wan Cai Ping1,Jin Zhi2,Xu Heng Yu2

Affiliation:

1. Institute of Microelectronics

2. University of Chinese Academy of Sciences

Abstract

Investigation of the reaction kinetics between Ni film and 4H-SiC substrate at temperatures which are usually used for ohmic contacts formation provides valuable insights into the studies on fundamental properties of ohmic contacts to 4H-SiC, which are limiting the switching speed, energy efficiency and high-temperature thermal stability of SiC MOSFETs. High Resolution Scanning Electron Microscope (HRSEM) and Raman spectroscopy were used to elaborately characterize the interfacial reaction products under various annealing conditions and to assess the thicknesses of reaction diffusion layers. The square of reaction layer thicknesses versus time followed parabolic law and the apparent active energy of interfacial reaction was derived as 1.5 eV (145 kJ/mol). For Raman spectra, the intensity ratio of two Raman peaks for each nickel silicide detected varied monotonically with temperature in the same trend, indicating that crystal quality of nickel silicide film was improved with annealing temperature rising at micron scale. The red-shift of Ni2Si peak locations at about 140 cm-1 with temperature was suggestive of the polycrystalline Ni2Si film with weaker stress/strain status. Moreover, the in-plane size of graphite cluster aggregating at top surface increased with annealing temperature rising until about 1000°C, which is detrimental to the ohmic contacts from the perspective of device applications.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3