Investigation of Cracks on Internal Surfaces of Extruded Cold Worked Thick Walled Pipes of an Age Hardened Al-Alloy

Author:

Jahangir Irsa1,Naeem Hafiz1,Faheem Abdul1,Tauqir Anjum1

Affiliation:

1. Institute of Space Technology

Abstract

Thick seamless pipes of hardenable aluminum alloys demand close geometrical tolerances as well as high quality surface finish which are met by cold drawing after a series of different thermo-mechanical treatments. To meet the requirements of critical applications the final product undergoes stringent quality inspection procedures. State of the art quality assessment can detect even minor isolated defects. The production facilities develop their quality criteria suitable for specific applications. The present study investigated minute defects on the inside surface of thick seamless pipes, proposed mechanism of their formation and suggested the impact of defects on the end use. The root cause analysis was conducted, and measures were suggested to control the defects. Thick extruded seamless aluminum alloy pipes underwent a series of different thermo mechanical treatments; the final dimensions with required tolerances and the surface finish were achieved by adopting a 2-step cold drawing process. Cold drawing generated residual stresses which resulted in the formation of cracks in the material, preferentially at the defects generated during solidification and/or extrusion processes. The final product underwent stringent quality inspection, and the material was rejected if cracks of size 3 mm or larger were detected. The die scratches or notches generated on the inside surface of the pipes, during extrusion are assumed to grow if subjected to high stresses during subsequent processes, e.g. cold working. Observations at high magnification in SEM helped to determine the morphology of cracks. Radiographic testing did not detect any crack in the bulk material. Particles with faceted features indicated the presence of inclusion. Inclusions were detected in the form of strings along the direction of cold drawing. Energy dispersive spectrometry in SEM was used to determine the composition of inclusion detected in the vicinity of cracks. Almost all the inclusions were rich in silicon, iron, calcium along with carbon; it indicated that the inclusions were trapped particles of fluxes, slag, and brick powder. Particles rich in Ca, Na and/or Cl indicated entrapped flux, Fe and Si were mostly coming from aluminum scrap and refractory powder while presence of carbon indicated entrapped extrusion lubricant. Inclusions rich in a large variety of unwanted elements indicated presence of slag particles. Numerical analysis was conducted to develop a model in FEM in which scratches of different depths were introduced and autofrettage pressure was applied to determine the stresses generated according to the established Von Mises Model; the latter was used to establish the yield criteria. Finite Element Modelling concluded that when cold drawing pressure was applied on a pipe with a single notch of depth 0.3mm or three notches of depth 0.1 or greater at different locations the Von Mises stresses approached the yield strength of the pipe.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3