Performance Improvement of Dye-Sensitized Solar Cells Using a Combination of TiO<sub>2</sub> and ZnO as Photoanodes

Author:

Nurazizah Euis Siti1,Fajariah Amalia Rohmah1,Aprilia Annisa1,Safriani Lusi1

Affiliation:

1. Universitas Padjadjaran

Abstract

TiO2 are usually used as photoanode to get high-performance dye-sensitized solar cells (DSSCs). TiO2 has good chemical stability, but still has poor electron mobility so that the DSSC efficiency is low. An alternative semiconductor metal-oxides such as ZnO currently are being explored due to ease of processing, higher electron mobility, interface band energetics, and can be utilized as photoanode also, but the chemical stability is low. Based on these facts, by combining the advantages of TiO2 and ZnO, the TiO2:ZnO composite can be an ideal material as a photoanode in DSSC. In this study, composite of TiO2:ZnO was synthesized using sol-gel method with ratio of TiO2 to ZnO were varied from 80:20, 60:40, 50:50, 40:60, and 20:80 in atomic percent. DSSCs were fabricated by coating the photoanode using screen-printing technique on a FTO-glass substrate. Composite of TiO2:ZnO photoanodes were then sensitized in a solution of N719 dye for several hours. Finally, the DSSCs were assembled and the power conversion efficiency was measured using an I–V measurement system. The highest power conversion efficiency of 2.30% was obtained from the cell fabricated with TiO2:ZnO (50:50) photoanode. This result indicated that the balanced composition allowed to increase Jsc along with reducing recombination process and retaining high dye-loading capability.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3