Dispenser Printing with Electrically Conductive Microparticles

Author:

Lempa Evelyn1,Rabe Maike1,Van Langenhove Lieva2

Affiliation:

1. Niederrhein University of Applied Sciences

2. Ghent University

Abstract

Electrically conductive textiles for wearable smart devices are in increasing demand [1]. The advantages of flexible fabric structures are combined with electronic functions, such as sensing or actuating, energy harvesting or illuminating, for the design of a multitude of smart textiles. Those functions are often created by applying conductive layers or patterns onto the textile surface with two-phase systems based on conductive filler particles in polymeric binders. However, those systems alter the textile-typical properties regarding haptic, drape, flexibility or weight, depending on the type of conductive particle used, i.e., metal-or carbon-based ones. Generally, electrical conductivity increases with the increase of conductive filler concentration. The relation between the various factors determining the electrical behavior as well as the percolation threshold for some dispersions and in particular the size and shape of the filler particles were previously assessed for planar coatings [2]. In this research work electrically, conductive patterns were printed with dispenser printing technology using such two-phase dispersions based on polyurethane and polyacrylate binders and various metal microparticle flakes. With this application method linear resistance of approx. 25 to 100 Ohm per 100 cm depending on the textile structure could be realized, which was not even significantly reduced by household washing at 40°C or abrasion by Martindale.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3