Synthesis and Characterization of Cobalt Free LiNiO<sub>2</sub> Substituted by Al-Doping from Beverage Cans via Solid-State Method

Author:

Aprilia Yunita1,Darmawan Luthfi Mursid1,Chairinnisa Afifah Nur1,Purwanto Agus1

Affiliation:

1. Universitas Sebelas Maret

Abstract

Lithium metal oxide such as NMC and NCA have been widely commercialized as electric vehicles. However, the cobalt content in the material is harmful to the environment, toxic, and expensive. This research aims to create a cathode material with a lower cost, efficient, and eco-friendly by extracting aluminum from the beverage cans waste as a cation-doping on the substitution of nickel material elements to repair material stability and electrochemistry performance. This study synthesized LNO cathode material by a solid-state method because it is low production cost and easy to synthesize. The extraction of beverage can waste successfully synthesized into alumina compounds corresponding to JCPDS card No. 29-0063. LNO cathode materials were prepared with a stoichiometric composition variation of LNO-P, LNO-Al 0.03, LNO-Al 0.07, and LNO-Al 0.1. Materials that have been successfully synthesized will be tested by X-Ray Diffraction to indicate that the material has a layered-hexagonal structure with high degree ordering. Fourier Transformed Infrared Spectroscopy tests to determine the composition of functional groups on LNO materials. The Scanning Electron Microscope analyzes the shape and morphology of surface material particles. Electrochemical testing uses cylinder batteries with a current of 0.1 C (1 C = 200 mA g-1) and a voltage of 2.6-4.3 volts, where obtained batteries LNO-P, LNO-Al 0.03, LNO-Al 0.07, and LNO-Al 0.1 with discharge capacity of 4.22 mAh g-1, 31.82 mAh g-1, 36.67 mAh g-1, and 37.48 mAh g-1

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3