Electrochemical Performances of PtCrCo Alloy/Nitrogen-Doped Activated Carbon for Proton Exchange Membrane Fuel Cell Catalyst

Author:

Sutarsis Sutarsis1,Hidayatullah Syarief1,Purniawan Agung1,Pradesar Yusuf1,Halim Jennita1

Affiliation:

1. Institut Teknologi Sepuluh Nopember

Abstract

Proton Exchange Membrane Fuel Cell is a promising green energy conversion machine. However, some drawbacks, such as Pt corrosion on the cathode side, the high price of Pt, Nafion membrane, and the need for the high precision assembly process, limit their commercialization. In this study, PtCrCo alloy which is supported by nitrogen-doped activated carbon was synthesized by facile method to increase electrochemical performance as a cathode catalyst and reduce Pt catalyst usage. Nitrogen-doped Activated Carbon/PtCrCo/Nitrogen-doped Carbon (NAC/PtCrCo/N) catalyst was investigated to analyze the effect of increasing the composition of nitrogen-doped activated carbon in the synthesis process on the morphology and electrochemical performances of the catalyst. Polyaniline (PANI) as Nitrogen precursor was added to Activated Carbon (AC) powder with ratio of AC to PANI; 1:0, 3:1, 1:1, 1:3, as called AC, NAC1, NAC2, and NAC3 respectively. The catalyst synthesis process is carried out with the four activated carbon supports. Material characterizations were carried out using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Brunauer-Emmett-Teller (BET), Cyclic Voltametry (CV), and Linear Sweep Voltametry (LSV). The XRD measurement shows that the addition of nitrogen doping tends to reduce the diffraction peak intensity of nitrogen-doped activated carbon compared to the pristine carbon. The doping also increases the surface area of the activated carbon as measured by the BET method. Nitrogen doping increases the conductivity and the addition of alloys can add better stability and catalytic activity for cyclic voltammetry results of the four catalysts cannot be calculated. The NAC3/Pt-Cr-Co/N electrocatalyst exhibited the highest initial potential at ~1 mAcm-2 of 0.997 V compared to the other four samples. On the other hand, AC/Pt-Cr-Co/N catalyst has the highest current density value of 22.156 mAcm-2.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3