Etch Profile Prediction Model Using Convolutional Neural Network

Author:

Tokuyama Masahiro1,Shinohara Kensuke2

Affiliation:

1. SCREEN Holdings Co., Ltd.

2. SCREEN Semiconductor Solutions Co., Ltd.

Abstract

Etch profile control of the wafer surface is a key application for single-wafer wet process equipment. Wet etch processes are grouped into two types, either uniform flat etch profiles or specific non-flat etch profiles that are required for downstream processes. For both groups of etch profile it can consume time and resources to obtain the processing conditions to achieve the desired etch profile due to the complex interactions in the process. Etch profile prediction models can provide process engineers a valuable tool to identify processing conditions to get the desired etch profile in less time. In this paper, we introduce an etch profile prediction model using a Convolutional Neural Network [1] and validation of the prediction model against actual experimental data. We also investigated methods on how to select the comprehensive learning conditions and understand the relationship with prediction accuracy and the number of learning conditions. We found the choice of parameter type to describe a process condition can affect prediction accuracy. The prediction model reproduced the trend of etch profiles even when learned on a small dataset.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low Illumination Image Enhancement Algorithm Based on Convolutional Neural Network;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3