Using Pectoral Muscle Removers in Mammographic Image Process to Improve Accuracy in Breast Cancer

Author:

Firdi Nabila Puspita1,Sardjono Tri Arief1,Hikmah Nada Fitrieyatul1

Affiliation:

1. Institut Teknologi Sepuluh Nopember (ITS)

Abstract

Cancer is a disease that attacks almost any organ or tissue of the body when abnormal cells grow uncontrollably and invade adjacent parts of the body. The second highest incidence of cancer in Indonesia is breast cancer with 42.1 cases per 100,000 population with an average mortality rate of 17 per 100,000 population. Mammography is a special imaging modality with x-rays to produce detailed breast images with at least 2 viewpoints, namely Craniocaudal (CC) or top view and Medio Lateral Oblique (MLO) or side view. The chest muscle area on the MLO display often interferes with the cancer identification process on mammography images because it has a dominant density and is similar to the density of cancer tissue. This research proposes a framework consisting of pectoral muscle detection on MLO display, image enhancement process, segmentation, and feature extraction. This study succeeded in increasing the accuracy of the MLO display mammography image after using the pectoral muscle remover using gradual edge detection and Hough lines Transform with the ratios of accuracy, precision, specificity, and sensitivity for images without pectoral muscle removers respectively were 33.59%, 30%, 11.49% and 80.48%. As for the images with pectoral muscle removers, the accuracy, precision, specificity, and sensitivity values respectively ​​were 68.67%, 64.71%, 57.14%, and 80.49%. For future projects, this research can be developed using Convolutional Neural Network (CNN) to improve accuracy. This is expected to help doctors and radiologists in the process of reading patient mammography so it can reduce mortality from breast cancer.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Reference27 articles.

1. Ministry of Health RI., Infodatin-cancer burden 2019, Jakarta Minist. Heal. RI. (2019).

2. WHO, Cancer, WHO. (n.d.). https://www.who.int/health-topics/cancer#tab=tab_1 (accessed November 12, 2020).

3. Kemenkes RI, Kementerian Kesehatan Republik Indonesia, (n.d.). https://www.kemkes.go.id/article/view/19020100003/hari-kanker-sedunia-2019.html (accessed November 12, 2020).

4. Rumah Sakit Klinis Onkologi Queen, Cancer-Breast-Cancer-Indonesian, Cancer Breast Cancer Indones. 38 (2017) 1–9.

5. A.B.R. Arafah, H.B. Notobroto, Faktor Yang Berhubungan Dengan Perilaku Ibu Rumah Tangga Melakukan Pemeriksaan Payudara Sendiri (Sadari), Indones. J. Public Heal. 12 (2018) 143.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Image Processing Framework for Breast Cancer Detection Using Multi-View Mammographic Images;EMITTER International Journal of Engineering Technology;2022-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3