The Effects of MWCNT Addition to Physical Properties of ZTA-MgO Cutting Tool

Author:

Hamidon Nor Ezzati1,Manshor Hanisah1,Azhar Ahmad Zahirani Ahmad1,Rejab Nik Akmar2,Ali Afifah1

Affiliation:

1. International Islamic University Malaysia

2. Universiti Sains Malaysia

Abstract

The purpose of this study is to develop ZTA-MgO-MWCNT cutting insert with enhanced properties and excellent tool performance that is suitable for high-speed machining. The effects of MWCNT addition on the physical properties of ZTA-MgO composites were investigated. The samples were fabricated using 80:20 composition (80 wt.% of Al2O3: 20 wt.% of YSZ) with fixed amount of MgO at 1.1 wt.% and MWCNT ranging from (0.1 – 0.5 wt.%) as secondary additives. The CNT was pre-treated in ethanol for 1 hour using an ultrasonic homogenizer before mixing and ball milled with Al2O3, YSZ and MgO compositions for 24 hours. The mixture is then pressed at 100 MPa into round-shaped cutting inserts mold after being dried at 100°C for 24 hours. The pressed samples were sintered at 1600 oC for 4 hour soaking time. XRD, density, porosity and shrinkage analysis performed on the samples. The XRD analyses indicate the presence of major phases were α-Al2O3, ZrO2, Zr0.963Y0.037O1.982 and MgAl2O4. The effect of MWNT addition on density, porosity and shrinkage of ZTA-MgO shows that density (4.210 g/cm3) and percentage of shrinkage (8.05%) obtained the highest value by 0.2 wt.% MWCNT compared with samples without CNT additives which is only 4.020 g/cm3 and 7.05% respectively. High density value indicates that the shrinkage percentage is also high, which corresponds to the densification of the composites. Poor dispersion of MWCNT within the matrix is highly accounted for agglomeration around Al2O3 grain boundaries and decreases in densification.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3